상단여백
HOME 학술
코로나19 위중증환자 '최대질병중증도' 예측 시스템 개발

[라포르시안] 코로나19 환자의 개별적 임상 상태에 따라 질병이 가장 악화했을 때의 상태(최대질병중증도)를 예측하는 시스템이 국내 의료진에 의해 개발됐다. 

확진자 발생시 자가격리 또는 병원이송 필요성을 선별 분류할 수 있어 중증환자의 사망률을 최소화할 수 있을 것으로 기대된다. 

강남세브란스병원은 비뇨의학과 구교철‧이광석(사진, 왼쪽부터) 교수와 KAIST 경영대학 안재현 교수팀이 역치 최적화 시뮬레이션 기법을 이용한 코로나19 환자의 최적 중등도 분류시스템에 관한 연구 결과를 발표했다고 5일 밝혔다

연구팀은 국내 코로나19 발생 시점부터 지난해 4월까지 확진 판정된 코로나19 환자 5,601명을 대상으로 입원 중 최대 임상 중증도를 분석했다. 이를 위해 질병관리본부의 코로나19 확진자 임상자료(환자 당 37개의 임상 및 검사결과 변수)를 활용했다.

연구팀은 AI 머신러닝 기술인 XGBoost 기계학습법 및 로지스틱 회귀 분석 교차 검증을 통해 예측 모델을 구현했다.

그 결과 중환자실 치료가 필요한 기관 삽관, 에크모 적용, 사망 정도의 중증질환으로 이환될 확률을 96.5%의 정확도로 예측할 수 있었다. 이는 기존 해외 연구의 결과의 정확도인 77~91%에 비해 높은 수준이라고 강남세브란스병원은 설명했다.

연구팀은 코로나19 검사장비가 제한된 의료환경이나 자가진단시 사용할 수 있도록, 혈액검사 등 변수들을 제외한 모델도 개발했다. 제한된 모델의 예측 정확도 역시 96.3%로 높은 수준을 나타냈다.

이 알고리즘은 웹사이트(http://covid19severity.duckdns.org)를 통해 누구나 이용할 수 있다.

구교철 교수는 “이번 연구로 신규 확진자 유입량 대비 가용한 의료자원에 따라 중증도 예측확률 역치를 조절함으로써 코로나19 사망률을 낮출 수 있다”며 “중환자실 치료가 반드시 필요한 환자들에게 병상이 배정되도록 하고, 가용한 의료자원의 효율적인 배분이 가능해 위드 코로나 시대의 활용도가 높을 것”이라고 말했다.

이번 연구 결과는 국제학술지인 JMIR Medical Informatics 최근호에 '역치 최적화 및 분리-이벤트 시뮬레이션 기법을 이용한 코로나19 환자의 최적 중등도 분류시스템 개발'이라는 제목으로 실렸다. 

박진규 기자  hope11@rapportian.com

<저작권자 © 라포르시안, 무단 전재 및 재배포 금지>

박진규 기자의 다른기사 보기
icon인기기사
icon추천기사
기사 댓글 0
전체보기
첫번째 댓글을 남겨주세요.
여백
여백
여백
여백
여백
여백
여백
Back to Top