상단여백
HOME 학술
국내 연구진, 기계학습 기반 ‘한국형 심혈관질환 예측 모델’ 개발
사진 왼쪽부터 분당서울대병원 순환기내과 강시혁 교수, 창원경상대병원 순환기내과 조상영 교수.

라포르시안] 분당서울대병원은 순환기내과 강시혁 교수와 창원경상대병원 순환기내과 조상영 교수 연구팀이 인공지능 기계학습 기반 ‘심혈관질환 예측 모델’을 개발했다고 26일 밝혔다. 

이번 모델은 국내 인구의 데이터를 바탕으로 개발된 만큼, 기존 활용되어 온 미국심장학회의 모델보다도 예측 정확도가 향상된 것으로 나타났다.  

최근 들어 개인의 위험인자를 고려해 심혈관질환 발생 위험을 예측하는 일은 치료방침과 치료목표를 정하는 데에 중요한 기준으로 사용되고 있다. 일반적인 고혈압 환자의 경우에는 140/90mmHg부터 혈압약을 복용하는 것이 보통이지만, 심혈관질환 발생 위험이 높은 환자라면 130/80mmHg부터 복용을 권고하는 것이 한 예다. 

하지만 기존에 사용되어 온 심혈관질환 예측 모델은 인종, 성별, 그리고 지역에 따라서도 정확도에 차이가 있었고, 이로 인해 위험성을 과대평가하거나 혹은 과소평가할 수 있다는 단점이 존재했다. 

강시혁·조상영 교수팀은 2009-2010년 국민건강보험공단 건강검진에 참여한 40세 이상 80세 미만의 성인 약 22만 명(평균연령 58.0세)의 데이터를 이용, 기계학습 기반의 ‘심혈관질환 예측 모델’을 만들었다. 예측 모델은 대상자의 데이터(연령, 성별, 수축기 혈압, 콜레스테롤 수치, 흡연여부, 당뇨병 병력 등)를 통해 심혈관질환의 발생 위험도를 예측하는 구조로 개발됐다.

연구 대상자 22만 명에 대한 5년간의 추적관찰 동안 총 7819명(3.51%)에서 죽상동맥경화성 심혈관질환(심근경색, 뇌졸중, 말초동맥질환 등)이 발생한 사실을 확인할 수 있었다. 

심혈관질환 위험도 예측 모델들의 정확도를 분석한 결과, 기존 모델들은 보통 70-80% 사이의 예측 정확도를 보였고, 특히 주된 비교 대상이 된 미국의 예측 모델 풀드 코호트 위험 평가(PCE, pooled cohort equation)를 통한 예측 정확도는 73.8%로 나타났다. 이와 비교해 이번에 개발된 모델은 1.3%p 상승한 75.1%로 기존 모델에 비교해 예측 성능이 우수한 것으로 확인됐다. 

이 같은 결과에 대해 연구진은 “동일한 변수를 사용했음에도 불구하고 정확도는 높아지고 오차는 감소했다는 것이 기계학습의 장점이라고 할 수 있다”며 “개개인의 위험도를 더욱 정확하게 산출할 수 있어 환자에게 개별화된 맞춤형 치료에도 유리할 것으로 내다본다”고 설명했다. 

창원경상대병원 조상영 교수는 “심혈관질환 예측 모델을 통해 위험군을 선별할 뿐만 아니라 효율적인 예방적 치료방침을 제시해야 한다는 점이 이번 연구의 핵심”이라며 “국내 데이터로 개발된 모델의 예측력이 기존에 사용되어 온 모델보다 우수하다는 사실이 확인된 만큼, 정확도가 높은 평가도구의 개발과 활용을 위해 지속적으로 연구해 나갈 예정”이라고 전했다.

이번 연구결과는 국제 학술지 '사이언티픽 리포트(Scientific Reports' 4월호에 실렸다. 

이상섭 기자  sslee@rapportian.com

<저작권자 © 라포르시안, 무단 전재 및 재배포 금지>

이상섭 기자의 다른기사 보기
icon인기기사
기사 댓글 0
전체보기
첫번째 댓글을 남겨주세요.
여백
여백
여백
여백
여백
여백
여백
Back to Top